Suuren näytteen koon edut

Posted on
Kirjoittaja: Peter Berry
Luomispäivä: 13 Elokuu 2021
Päivityspäivä: 13 Marraskuu 2024
Anonim
Suuren näytteen koon edut - Tiede
Suuren näytteen koon edut - Tiede

Sisältö

Tieteellisissä tutkimuksissa otoksen koko on keskeinen tekijä laadulliselle tutkimukselle. Otoksen koko, joskus esitetty n, on yksittäisten tietoyksiköiden lukumäärä, jota käytetään laskettaessa tilastot. Suurempien otoskokojen avulla tutkijat voivat paremmin määrittää tietonsa keskimääräiset arvot ja välttää virheitä testaamalla pienen määrän mahdollisesti epätyypillisiä näytteitä.


TL; DR (liian pitkä; ei lukenut)

Otoskoko on tärkeä näkökohta tutkimukselle. Suuremmat otoskokot tarjoavat tarkempia keskiarvoja, tunnistavat poikkeavat, jotka voivat vinouttaa tietoja pienemmässä näytteessä ja tuottaa pienemmän virhemarginaalin.

Otoskoko

Otoksen koko on kyselyssä tai kokeessa testattujen tietokappaleiden lukumäärä. Jos esimerkiksi testaat 100 meriveden näytettä öljyjäämien varalta, näytteesi koko on 100. Jos tutkit 20 000 ihmistä ahdistuksen oireiden varalta, näytteen koko on 20 000. Suuremmilla näytteenkokoilla on selvä etu, että ne tarjoavat enemmän tietoa tutkijoiden kanssa työskennellä; mutta suuret otoskoko kokeet vaativat suurempia taloudellisia ja aika sitoumuksia.

Keskiarvo ja poikkeamat

Suuremmat näytteen koot auttavat määrittämään laadun keskiarvon testattujen näytteiden joukossa - tämä keskiarvo on tarkoittaa. Mitä suurempi näytteen koko, sitä tarkempi keskiarvo. Esimerkiksi, jos huomaat, että 40 ihmisen joukossa keskimääräinen korkeus on 5 jalkaa, 4 tuumaa, mutta 100 ihmisen joukossa keskimääräinen korkeus on 5 jalkaa, 3 tuumaa, toinen mittaus on parempi arvio ihon keskimääräisestä korkeudesta henkilökohtainen, koska testaat huomattavasti enemmän kohteita. Keskiarvon määrittäminen antaa tutkijoille myös helpomman tarkkuuden harha. Poikkeama on tieto, joka eroaa voimakkaasti keskiarvosta ja voi edustaa tutkimuksen kannalta kiinnostavaa kohtaa. Joten keskikorkeuden perusteella joku, jonka korkeus on 6 jalkaa, 8 tuumaa, olisi syrjäinen datapiste.


Pienten näytteiden vaara

Poikkeamamahdollisuus on osa sitä, mikä tekee suuresta näytteen koosta tärkeän. Oletetaan esimerkiksi, että tutkit 4 ihmistä heidän poliittisesta kuuluisuudestaan, ja yksi kuuluu Itsenäiselle puolueelle. Koska tämä on yksi henkilö näytteessä 4, tilastosi osoittavat, että 25 prosenttia väestöstä kuuluu Itsenäiseen puolueeseen, todennäköisesti epätarkko ekstrapolointi. Otoksen koon lisäämisellä vältetään harhaanjohtavat tilastotiedot, jos näytteessäsi on ulkopuolista.

Virhemarginaali

Otoksen koko liittyy suoraan tilastoihin virhemarginaalitai kuinka tarkka tilastot voidaan laskea olevan. Kyllä tai ei -kysymyksille, kuten esimerkiksi omistaako henkilö auton, voit määrittää tilastollisen virheen marginaalin jakamalla 1 näytteen koon neliöjuurilla ja kertomalla 100: lla. Kokonaismäärä on prosenttiosuus . Esimerkiksi näytteen koko 100 on 10 prosentin virhemarginaali. Mittaamalla numeerisia ominaisuuksia keskiarvolla, kuten korkeus tai paino, kerro tämä kokonaisarvo kahdesti keskihajonta datasta, joka mittaa kuinka data-arvot ovat jakautuneet keskiarvosta. Molemmissa tapauksissa mitä suurempi otoskoko on, sitä pienempi virhe on.